Skip to main content
Log in

Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradable blends of poly(l-lactide) (PLL) toughened with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer and compatibilized with a purpose-designed poly(l-lactide-co-caprolactone) (PLLCL) copolymer were prepared. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends of various compositions were prepared by melt mixing, hot-pressed into thin films and their properties tested. The results showed that, although the TPU could toughen the PLL, the blends were immiscible leading to phase separation with the TPU domains distributed in the PLL matrix. However, addition of the PLLCL copolymer could partially compatibilize the blend by improving the interfacial adhesion between the two phases. Biodegradability testing showed that the blends were biodegradable and that the PLLCL copolymer could increase the rate of biodegradation under controlled composting conditions. The 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight was found to exhibit the best all-round properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. ASTM D5338-15 (2015) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures, ASTM International, West Conshohocken

    Google Scholar 

  2. Auras RA, Lim L-T, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken

    Book  Google Scholar 

  3. Ren J (ed) (2010) Biodegradable poly(lactic acid): synthesis, modification, processing and applications. Tsinghua University Press, Beijing

    Google Scholar 

  4. Piemonte V (ed) (2014) Polylactic acid: synthesis, properties and applications. Nova Science, New York

    Google Scholar 

  5. Endres H-J, Siebert-Raths A (2011) Engineering biopolymers: markets, manufacturing, properties and applications. Hanser, Munich

    Book  Google Scholar 

  6. Garlotta D (2001) J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  7. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Express Polym Lett 9:435–455

    Article  CAS  Google Scholar 

  8. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552–571

    Article  CAS  Google Scholar 

  9. Urquijo J, Guerrica-Echevarria G, Eguiazabal JI (2015) J Appl Polym Sci 132:42641. doi:10.1002/app.42641

    Article  Google Scholar 

  10. Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M (2015) RSC Adv 5:98971–98982

    Article  CAS  Google Scholar 

  11. López-Rodríguez N, López-Arraiza A, Meaurio E, Sarasua JR (2006) Polym Eng Sci 46:1299–1308

    Article  Google Scholar 

  12. Zhang M, Thomas NL (2011) Adv Polym Technol 30:67–79

    Article  Google Scholar 

  13. Yokohara T, Yamaguchi M (2008) Eur Polym J 44:677–685

    Article  CAS  Google Scholar 

  14. Shibata M, Inoue Y, Miyoshi M (2006) Polymer 47:3557–3564

    Article  CAS  Google Scholar 

  15. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199–207

    Article  Google Scholar 

  16. Kunthadong P, Molloy R, Worajittiphon P, Leejarkpai T, Kaabbuathong N, Punyodom W (2015) J Polym Environ 23:107–113

    Article  CAS  Google Scholar 

  17. Singla RK, Maiti SN, Ghosha AK (2016) RSC Adv 6:14580–14588

    Article  Google Scholar 

  18. Feng F, Ye L (2011) J Appl Polym Sci 119:2778–2783

    Article  CAS  Google Scholar 

  19. Feng F, Zhao X, Ye L (2011) J Macromol Sci B 50:1500–1507

    Article  CAS  Google Scholar 

  20. Lai S-M, Lan Y-C (2013) J Polym Res 20:140. doi:10.1007/s10965-013-0140-6

    Article  Google Scholar 

  21. Lai S-M, Wu W-L, Wang Y-J (2016) J Polym Res 23:99. doi:10.1007/s10965-016-0993-6

    Article  Google Scholar 

  22. Jing X, Mi HY, Salick MR, Cordie T, Crone WC, Peng X-F, Turng L-S (2014) J Cell Plast 50:361–379

    Article  CAS  Google Scholar 

  23. Jaso V, Glenn G, Klamczynski A, Petrovic ZS (2015) Polym Test 47:1–3

    Article  CAS  Google Scholar 

  24. Li Y, Shimizu H (2007) Macromol Biosci 7:921–928

    Article  CAS  Google Scholar 

  25. Yuan Y, Ruckenstein E (1998) Polym Bull 40:485–490

    Article  CAS  Google Scholar 

  26. Hyon S-H, Jamshidi K, Ikada Y (1997) Biomaterials 18:1503–1508

    Article  CAS  Google Scholar 

  27. ASTM D1238-13 (2013) Standard test method for melt flow rates of thermoplastics by extrusion plastometer. ASTM International, West Conshohocken

    Google Scholar 

  28. ASTM D882-02 (2002) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken

    Google Scholar 

  29. ASTM F1249-13 (2013) Standard test method for water vapor transmission rate through plastic film and sheeting using a modulated infrared sensor. ASTM International, West Conshohocken

    Google Scholar 

  30. ASTM D3985-05(2010)e1 (2010) Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. ASTM International, West Conshohocken

    Google Scholar 

  31. ISO 14855-1:2005 (2005) Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—Method by analysis of evolved carbon dioxide—Part 1: General method. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  32. Grijpma DW, Pennings AJ (1991) Polym Bull 25:335–341

    Article  CAS  Google Scholar 

  33. Nalampang K, Molloy R, Punyodom W (2007) Polym Adv Technol 18:240–247

    Article  CAS  Google Scholar 

  34. Kricheldorf HR, Kreiser I (1987) J Macromol Sci A 24:1345–1356

    Article  Google Scholar 

  35. Kasperczyk J, Bero M (1991) Makromol Chem 192:1777–1787

    Article  CAS  Google Scholar 

  36. Kasperczyk J, Bero M (1993) Makromol Chem 194:913–925

    Article  CAS  Google Scholar 

  37. Martínez-Abad A, González-Ausejo J, Lagarón JM, Cabedo L (2016) Polym Degrad Stab 132:52–61

    Article  Google Scholar 

  38. Spontak RJ, Patel NP (2004) In: Hamley IW (ed) Developments in Block Copolymer Science and Technology, Chap. 5, pp 159 ff, Wiley, Chichester

    Google Scholar 

  39. Lunt J (1998) Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  40. Rudeekit Y, Numnoi J, Tajan M, Chaiwutthinan P, Leejarkpai T (2008) J Metals Mater Miner 18:83–87

    Google Scholar 

  41. Tsuji H (2008) Degradation of poly(lactide)-based biodegradable materials. Nova Science, New York

    Google Scholar 

  42. Tokiwa Y, Calabia BP (2007) J Polym Environ 15:259–267

    Article  CAS  Google Scholar 

  43. JIS K 6953 (2000) (ISO 14855), Determination of the ultimate aerobic biodegradability and disintegration of plastic materials under controlled composting conditions (Method by analysis of evolved carbon dioxide), Biodegradable Plastics Society. Japan

  44. Tsuji H, Ishizaka T (2001) Int J Biol Macromol 29:83–89

    Article  CAS  Google Scholar 

  45. Tsuji H, Ishizaka T (2001) Macromol Biosci 1:59–65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Graduate School, Chiang Mai University, for the provision of a research grant for one of us (K.S.) and the National Research University Project under Thailand’s Office of the Higher Education Commission for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Molloy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthapakti, K., Molloy, R., Punyodom, W. et al. Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing. J Polym Environ 26, 1818–1830 (2018). https://doi.org/10.1007/s10924-017-1082-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1082-6

Keywords

Navigation